19 research outputs found

    People tracking by cooperative fusion of RADAR and camera sensors

    Get PDF
    Accurate 3D tracking of objects from monocular camera poses challenges due to the loss of depth during projection. Although ranging by RADAR has proven effective in highway environments, people tracking remains beyond the capability of single sensor systems. In this paper, we propose a cooperative RADAR-camera fusion method for people tracking on the ground plane. Using average person height, joint detection likelihood is calculated by back-projecting detections from the camera onto the RADAR Range-Azimuth data. Peaks in the joint likelihood, representing candidate targets, are fed into a Particle Filter tracker. Depending on the association outcome, particles are updated using the associated detections (Tracking by Detection), or by sampling the raw likelihood itself (Tracking Before Detection). Utilizing the raw likelihood data has the advantage that lost targets are continuously tracked even if the camera or RADAR signal is below the detection threshold. We show that in single target, uncluttered environments, the proposed method entirely outperforms camera-only tracking. Experiments in a real-world urban environment also confirm that the cooperative fusion tracker produces significantly better estimates, even in difficult and ambiguous situations

    Radar and video as the perfect match : a cooperative method for sensor fusion

    Get PDF
    Accurate detection and tracking of road users is essential for driverless cars and many other smart mobility applications. As no single sensor can provide the required accuracy and robustness, the output from several sensors needs to be combined. Especially radar and video are a good match, because their weaknesses and strengths complement each other. Researchers from IPI – an imec research group at Ghent University – developed a new technique to optimize radar-video fusion by exchanging information at an earlier stage

    Learning morphological operators for depth completion

    Get PDF
    Depth images generated by direct projection of LiDAR point clouds on the image plane suffer from a great level of sparsity which is difficult to interpret by classical computer vision algorithms. We propose a method for completing sparse depth images in a semantically accurate manner by training a novel morphological neural network. Our method approximates morphological operations by Contraharmonic Mean Filter layers which are easily trained in a contemporary deep learning framework. An early fusion U-Net architecture then combines dilated depth channels and RGB using multi-scale processing. Using a large scale RGBD dataset we are able to learn the optimal morphological and convolutional filter shapes that produce an accurate and fully sampled depth image at the output. Independent experimental evaluation confirms that our method outperforms classical image restoration techniques as well as current state-of-the-art neural networks. The resulting depth images preserve object boundaries and can easily be used to augment various tasks in intelligent vehicles perception systems

    Cooperative multi-sensor tracking of vulnerable road users in the presence of missing detections

    Get PDF
    This paper presents a vulnerable road user (VRU) tracking algorithm capable of handling noisy and missing detections from heterogeneous sensors. We propose a cooperative fusion algorithm for matching and reinforcing of radar and camera detections using their proximity and positional uncertainty. The belief in the existence and position of objects is then maximized by temporal integration of fused detections by a multi-object tracker. By switching between observation models, the tracker adapts to the detection noise characteristics making it robust to individual sensor failures. The main novelty of this paper is an improved imputation sampling function for updating the state when detections are missing. The proposed function uses a likelihood without association that is conditioned on the sensor information instead of the sensor model. The benefits of the proposed solution are two-fold: firstly, particle updates become computationally tractable and secondly, the problem of imputing samples from a state which is predicted without an associated detection is bypassed. Experimental evaluation shows a significant improvement in both detection and tracking performance over multiple control algorithms. In low light situations, the cooperative fusion outperforms intermediate fusion by as much as 30%, while increases in tracking performance are most significant in complex traffic scenes

    Weakly supervised deep learning method for vulnerable road user detection in FMCW radar

    Get PDF
    Millimeter-wave radar is currently the most effective automotive sensor capable of all-weather perception. In order to detect Vulnerable Road Users (VRUs) in cluttered radar data, it is necessary to model the time-frequency signal patterns of human motion, i.e. the micro-Doppler signature. In this paper we propose a spatio-temporal Convolutional Neural Network (CNN) capable of detecting VRUs in cluttered radar data. The main contribution is a weakly supervised training method which uses abundant, automatically generated labels from camera and lidar for training the model. The input to the network is a tensor of temporally concatenated range-azimuth-Doppler arrays, while the ground truth is an occupancy grid formed by objects detected jointly in-camera images and lidar. Lidar provides accurate ranging ground truth, while camera information helps distinguish between VRUs and background. Experimental evaluation shows that the CNN model has superior detection performance compared to classical techniques. Moreover, the model trained with imperfect, weak supervision labels outperforms the one trained with a limited number of perfect, hand-annotated labels. Finally, the proposed method has excellent scalability due to the low cost of automatic annotation

    Behavioral pedestrian tracking using a camera and lidar sensors on a moving vehicle

    Get PDF
    In this paper, we present a novel 2D–3D pedestrian tracker designed for applications in autonomous vehicles. The system operates on a tracking by detection principle and can track multiple pedestrians in complex urban traffic situations. By using a behavioral motion model and a non-parametric distribution as state model, we are able to accurately track unpredictable pedestrian motion in the presence of heavy occlusion. Tracking is performed independently, on the image and ground plane, in global, motion compensated coordinates. We employ Camera and LiDAR data fusion to solve the association problem where the optimal solution is found by matching 2D and 3D detections to tracks using a joint log-likelihood observation model. Each 2D–3D particle filter then updates their state from associated observations and a behavioral motion model. Each particle moves independently following the pedestrian motion parameters which we learned offline from an annotated training dataset. Temporal stability of the state variables is achieved by modeling each track as a Markov Decision Process with probabilistic state transition properties. A novel track management system then handles high level actions such as track creation, deletion and interaction. Using a probabilistic track score the track manager can cull false and ambiguous detections while updating tracks with detections from actual pedestrians. Our system is implemented on a GPU and exploits the massively parallelizable nature of particle filters. Due to the Markovian nature of our track representation, the system achieves real-time performance operating with a minimal memory footprint. Exhaustive and independent evaluation of our tracker was performed by the KITTI benchmark server, where it was tested against a wide variety of unknown pedestrian tracking situations. On this realistic benchmark, we outperform all published pedestrian trackers in a multitude of tracking metrics
    corecore